LinuxParty
El teorema fundamental del cálculo consiste (intuitivamente) en la afirmación de que la derivación e integración de una función son operaciones inversas. Esto significa que toda función continua integrable verifica que la derivada de su integral es igual a ella misma. Este teorema es central en la rama de las matemáticas denominado análisis matemático o cálculo.
Una consecuencia directa de este teorema es la regla de Barrow, denominada en ocasiones segundo teorema fundamental del cálculo, y que permite calcular la integral de una función utilizando la integral indefinida de la función al ser integrada.
Aunque los antiguos matemáticos griegos como Arquímedes ya contaban con métodos aproximados para el cálculo de volúmenes, áreas y longitudes curvas, fue gracias a una idea originalmente desarrollada por el matemático inglés Isaac Barrow y los aportes de Isaac Newton y Gottfried Leibniz que este teorema pudo ser enunciado y demostrado.
Intuición geométrica
Supóngase que se tiene una función continua y = f(x) y que su representación gráfica es una curva. Entonces, para cada valor de x tiene sentido de manera intuitiva pensar que existe una función A(x) que representa el área bajo la curva entre 0 y x aún sin conocer su expresión.
Supóngase ahora que se quiere calcular el área bajo la curva entre x y x+h. Se podría hacer hallando el área entre 0 y x+h y luego restando el área entre 0 y x. En resumen, el área de esta especie de "loncha" sería A(x+h) − A(x).
Otra manera de estimar esta misma área es multiplicar h por f(x) para hallar el área de un rectángulo que coincide aproximadamente con la "loncha". Nótese que la aproximación al área buscada es más precisa cuanto más pequeño sea el valor de h.
Por lo tanto, se puede decir que A(x+h) − A(x) es aproximadamente igual a f(x) · h, y que la precisión de esta aproximación mejora al disminuir el valor de h. En otras palabras, ƒ(x)·h ≈ A(x+h) − A(x), convirtiéndose esta aproximación en igualdad cuando h tiende a 0 como límite.
Dividiendo los dos lados de la ecuación por h se obtiene
Cuando h tiende a 0, se observa que el miembro derecho de la ecuación es sencillamente la derivada A’(x) de la función A(x) y que el miembro izquierdo se queda en ƒ(x) al ya no estar h presente.
Se muestra entonces de manera informal que ƒ(x) = A’(x), es decir, que la derivada de la función de área A(x) es en realidad la función ƒ(x). Dicho de otra forma, la función de área A(x) es la antiderivada de la función original.
Lo que se ha mostrado es que, intuitivamente, calcular la derivada de una función y "hallar el área" bajo su curva son operaciones "inversas", es decir el objetivo del teorema fundamental del cálculo integral.
Primer teorema fundamental del cálculo.
Más información en la Wikipedia.
-
Matemáticas
- Las 5 mejores herramientas de escritura de fórmulas y ecuaciones matemáticas para Linux
- Expertos en física teórica desafían la comprensión sobre viajes en el tiempo y revelan conceptos clave
- Científicos finalmente resolvieron el misterio de cómo funciona el calendario maya
- El final de las calificaciones (y las notas)
- Los números mayas, son una maravilla matemática
- Matemático australiano descubre geometría aplicada grabada en tablilla de 3.700 años
- Matemáticas, Integración por Fracciones Parciales
- Computación cuántica explicada en unos minutos
- [VIDEO] Fácil de Entender, Representación gráfica de una INTEGRAL.
- ¿Cuántos triángulos ves aquí? Parece fácil pero pocos aciertan
- No, probablemente NO estamos viviendo en una simulación por computadora, dice la física.
- Ritmomaquia, el juego de aprender matemáticas.
- ¿Estamos en el año 2016? Algunos matemáticos creen que toda la Historia de la humanidad está mal
- ¿ Sabes / recuerdas calcular una raíz cuadrada ? y Potencias de Fracciones [VIDEOS]
- El número PI tiene su propia música, impactante melodia